Review:

In 1.1-1.5, we talked about

- $\frac{d y}{d x}=f(x) \Longrightarrow y=\int f(x) d x+C$
- Separable Equation $\frac{d y}{d x}=g(x) k(y)$

If $k(y) \neq 0, \int \frac{d y}{k(y)}=\int g(x) d x$
Also we need to check if $k(y)=0$ is a solution.

- Linear First Order Equation $\frac{d y}{d x}+P(x) y=Q(x)$

1. Compute $\rho(x)=e^{\int P(x) d x}$ (integrating factor).
2. Multiply both sides of (*) by $\rho(x)$
3. $\mathrm{LHS}=D_{x}(\rho(x) y(x))$
4. Integrate both sides, $\rho(x) y(x)=\int \rho(x) Q(x) d x+C$ and solve for y.

Outline of Section 1.6

1. Substitution Method

- Equation: $\frac{d y}{d x}=F(a x+b y+c)$
- Homogeneous Equations: $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$
- Bernoulli Equations: $\frac{d y}{d x}+P(x) y=Q(x) y^{n}$
- Reducible Second-order Equations:

$$
F\left(x, y, y^{\prime} y^{\prime \prime}\right)=0
$$

with either y or x is missing.

2. Exact Equations

- What is an exact equation?
- How to check an equation is exact?
- How to solve an exact equation?

Part 1 Substitution Method
Often a substitution can be used to transform a given differential equation into one that we already know how to solve. For example,

The differential equation of the form

$$
\begin{equation*}
\frac{d y}{d x}=F(a x+b y+c) \tag{1}
\end{equation*}
$$

can be transformed into a separable equation by use of the substitution $v=a x+b y+c$.
Example 1 Find a general solution of the differential equation

$$
\begin{equation*}
\frac{d y}{d x}=(9 x+y)^{2} \tag{1}
\end{equation*}
$$

ANS: Let $v=9 x+y \ldots O_{u r}$ goal is to transform (1) into an eqn in term of $\frac{d v}{d x}$. Then $\frac{d v}{d x}=9+\frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{d v}{d x}-9$.
Substitute them into (1), then

$$
\begin{aligned}
\frac{d v}{d x}-9 & =v^{2} \\
\Rightarrow \quad \frac{d v}{d x} & =v^{2}+9 \quad(\text { separable })
\end{aligned}
$$

Separating variable and integrating both sides,

$$
\begin{array}{ll}
& \int \frac{d v}{v^{2}+9}=\int d x
\end{array} \quad \frac{1}{9} \int \frac{d v}{\left(\frac{v}{3}\right)^{2}+1} \quad \text { (u =subs) }
$$

$$
\Rightarrow \quad \frac{v}{3}=\tan (3 x+c)
$$

$$
\Rightarrow \quad v=3 \tan (3 x+c)
$$

Back substitute $v=9 x+y$.

$$
\begin{aligned}
& 9 x+y=3 \tan (3 x+c) \\
& \Rightarrow y=3 \tan (3 x+c)-9 x
\end{aligned}
$$

- Homogeneous Equations

A homogeneous first-order differential equation is one that can be written in the form

$$
\begin{equation*}
\frac{d y}{d x}=F\left(\frac{y}{x}\right) \tag{3}
\end{equation*}
$$

The substitution $v=\frac{y}{x}, \quad$ that is, $\quad y=v x \quad$ leads to

$$
\begin{equation*}
\frac{d y}{d x}=v+x \frac{d v}{d x} \tag{4}
\end{equation*}
$$

by the product rule.
The given equation $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$ then becomes

$$
\begin{equation*}
v+x \frac{d v}{d x}=F(v) \Longrightarrow x \frac{d v}{d x}=F(v)-v \tag{5}
\end{equation*}
$$

which is a separable differential equation for v as a function of x.
Example 2 Find a general solution of the differential equation

$$
\begin{equation*}
\left(x^{2}-y^{2}\right) \frac{d y}{d x}=2 x y \tag{6}
\end{equation*}
$$

ANS: If $x^{2}-y^{2} \neq 0, x \neq 0$, we can rewrite (1) as

$$
\begin{equation*}
\frac{d y}{d x}=\frac{(2 x y) / x^{2}}{\left(x^{2}-y^{2}\right) / x^{2}}=\frac{2 \frac{y}{x}}{1-\left(\frac{y}{x}\right)^{2}} \quad\left(=F\left(\frac{y}{x}\right)\right) \tag{2}
\end{equation*}
$$

Let $v=\frac{y}{x}$, then $y=v x . \frac{d y}{d x}=v+x \frac{d v}{d x}$
Substitute them into (2),

$$
\begin{aligned}
& V+x \cdot \frac{d v}{d x}=\frac{2 v}{1-v^{2}} \\
& \Rightarrow \quad x \cdot \frac{d v}{d x}=\left(\frac{2 v}{1-v^{2}}-v=\frac{2 v-v+v^{3}}{1-v^{2}}=\right) \frac{v^{3}+v}{1-v^{2}} \quad \text { (separable) }
\end{aligned}
$$

separating variables and integrate.

$$
\begin{equation*}
\int \frac{1-v^{2}}{v^{3}+v} d v=\int \frac{1}{x} d x \tag{3}
\end{equation*}
$$

To solve

$$
\int \frac{1-v^{2}}{v^{3}+v} d v=\int \frac{1-v^{2}}{v\left(v^{2}+1\right)} d v
$$

Recall the partial fraction method.
Assume $\frac{1-v^{2}}{v\left(v^{2}+1\right)}=\frac{A}{v}+\frac{B v+c}{v^{2}+1}$

$$
\begin{aligned}
& =\frac{A v^{2}+A+B v^{2}+C v}{v\left(v^{2}+1\right)} \\
\Rightarrow \frac{-v^{2}+1}{v\left(v^{2}+1\right)} & =\frac{(A+B) v^{2}+C v+A}{v\left(v^{2}+1\right)}
\end{aligned}
$$

Comparing the coefficients, we have

$$
\left\{\begin{array} { l }
{ A + B = - 1 } \\
{ C = 0 } \\
{ A = 1 }
\end{array} \quad \Rightarrow \left\{\begin{array}{l}
A=1 \\
B=-2 \\
C=0
\end{array}\right.\right.
$$

Thus

$$
\frac{1-v^{2}}{v\left(v^{2}+1\right)}=\frac{1}{v}-\frac{2 v}{v^{2}+1}
$$

So

$$
\begin{aligned}
\int \frac{1-v^{2}}{v\left(v^{2}+1\right)} d v & =\int\left(\frac{1}{v}-\frac{2 v}{v^{2}+1}\right) d v=\ln |v|-\int \frac{2 v}{v^{2}+1} d v \\
& =\ln |v|-\ln \left|v^{2}+1\right|=\ln \left|\frac{v}{v^{2}+1}\right|
\end{aligned}
$$

So (3) becomes

$$
\ln \left|\frac{v}{v^{2}+1}\right|=\ln |x|+C_{1}
$$

Take exp

$$
\frac{v}{v^{2}+1}=c x
$$

Substitute

$$
v=\frac{y}{x} \text { back. }
$$

$$
\begin{aligned}
& \frac{\left(\frac{y}{x}\right) x^{2}}{\left(\left(\frac{y}{x}\right)^{2}+1\right) x^{2}}=c x \\
\Rightarrow & \frac{x y}{y^{2}+x^{2}}=c x \\
\Rightarrow & y=c\left(x^{2}+y^{2}\right)
\end{aligned}
$$

The following table indicates some simple partial fractions which can be associated with various rational functions:

Form of the rational function

$$
\frac{p x+q}{(x-a)(x-b)}, a \neq b
$$

$$
\frac{p x+q}{(x-a)^{2}}
$$

$$
\frac{p x^{2}+q x+r}{(x-a)(x-b)(x-c)}
$$

$$
\frac{p x^{2}+q x+r}{(x-a)^{2}(x-b)}
$$

$\frac{p x^{2}+q x+r}{(x-a)\left(x^{2}+b x+c\right)}$ where $x^{2}+b x+c$ cannot be factorised further

Form of the partial fraction

$$
\frac{A}{x-a}+\frac{B}{x-b}
$$

$$
\frac{\mathrm{A}}{x-a}+\frac{\mathrm{B}}{(x-a)^{2}}
$$

$$
\frac{\mathrm{A}}{x-a}+\frac{\mathrm{B}}{x-b}+\frac{\mathrm{C}}{x-c}
$$

$$
\frac{\mathrm{A}}{x-a}+\frac{\mathrm{B}}{(x-a)^{2}}+\frac{\mathrm{C}}{x-b}
$$

$$
\frac{\mathrm{A}}{x-a}+\frac{\mathrm{B} x+\mathrm{C}}{x^{2}+b x+c}
$$

Exercise 3 (Check the answer from the filled-in notes)
Find a general solution of the differential equation

$$
x \frac{d y}{d x}=y+\sqrt{x^{2}+y^{2}} \mathbb{D}
$$

ANS: If $x>0$, we can divide both sides of (1) by x.

$$
\begin{aligned}
\quad \frac{d y}{d x} & =\frac{y}{x}+\sqrt{\frac{x^{2}}{x^{2}}+\left(\frac{y y}{x}\right)^{2}} \\
\Rightarrow \quad & \frac{d y}{d x}
\end{aligned}=\frac{y}{x}+\sqrt{1+\left(\frac{y}{x}\right)^{2}}
$$

(2) (homogeneous equation)

Let $v=\frac{y}{x}$, then $y=v x$ and $\frac{d y}{d x}=\frac{d v}{d x} \cdot x+v$
subsitute them into (2), we have

$$
\begin{aligned}
& \frac{d v}{d x} \cdot x+v=v+\sqrt{1+v^{2}} \\
\Rightarrow \quad & \frac{d v}{d x} \cdot x=\sqrt{1+v^{2}} \\
\Rightarrow & \frac{d v}{\sqrt{1+v^{2}}}=\frac{1}{x} d x
\end{aligned}
$$

By checking an integral table, we know

$$
\begin{aligned}
& \ln \left(v+\sqrt{v^{2}+1}\right)=\ln |x|+c \\
\Rightarrow & v+\sqrt{v^{2}+1}+c x
\end{aligned}
$$

Back- unbsituting. $v=\frac{y}{x}$, we have

$$
\begin{aligned}
& \frac{y}{x}+\sqrt{\left(\frac{y}{x}\right)^{2}+1}=c x \\
\Rightarrow & y+\sqrt{y^{2}+x^{2}}=c x^{2}
\end{aligned}
$$

Bernoulli Equations
A first-order differential equation of the form

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=Q(x) y^{n} \tag{1}
\end{equation*}
$$

is called a Bernoulli equation.
If either $\mathrm{n}=0$ or $\mathrm{n}=1$, Eq. (1) is linear.
In our homework, we need to show the substitution

$$
\begin{equation*}
v=y^{1-n} \tag{8}
\end{equation*}
$$

transforms Eq. (1) into the linear first-order equation

$$
\begin{equation*}
\frac{d v}{d x}+(1-n) P(x) v=(1-n) Q(x) \tag{9}
\end{equation*}
$$

Example 4 Find a general solution of the differential equation

$$
x^{2} \frac{d y}{d x}+2 x y=5 y^{4}
$$

Ans: If $x \neq 0$. We divide both sides of (1) by x^{2}

$$
\frac{d y}{d x}+\underset{p(x)}{\prod_{X}^{x}} y={\underset{Q}{1}}_{\frac{5}{x^{2}}}^{\int_{\downarrow}} y_{\downarrow}^{4}
$$

This is a Bernoulli equation. We let

$$
V=y^{1-n}=y^{1-4}=y^{-3}
$$

Then $y=v^{-\frac{1}{3}}\left((v)^{-\frac{1}{3}}=\left(y^{-3}\right)^{-\frac{1}{3}}=y\right)$
Taking diff. both sides.

$$
\frac{d y}{d x}=-\frac{1}{3} v^{-\frac{4}{3}} \frac{d v}{d x}
$$

Substitute $y=v^{-\frac{1}{3}}, \frac{d y}{d x}=-\frac{1}{3} v^{-\frac{4}{3}} \frac{d v}{d x}$ into (2).

$$
-\frac{1}{3} v^{-\frac{4}{3}} \frac{d v}{d x}+\frac{2}{x} \cdot v^{-\frac{1}{3}}=\frac{5}{x^{2}} v^{-\frac{4}{3}}
$$

We multiply both sides by $-3 V^{\frac{4}{3}}$, we have

$$
\begin{align*}
& -\frac{1}{3} v^{-\frac{4}{3}}\left(-3 v^{\frac{4}{3}}\right) \frac{d v}{d x}+\frac{2}{x} \cdot v^{-\frac{1}{3}} \cdot\left(-3 v^{\frac{4}{3}}\right)=\frac{5}{x^{2}} v^{-\frac{4}{3}} \cdot\left(-3 v^{\frac{4}{3}}\right) \\
& \Rightarrow \quad \frac{d v}{d x}-\frac{6}{x} v=-\frac{15}{x^{2}} \text { (Linear 1st order) } \tag{3}
\end{align*}
$$

An integrating factor

$$
\rho(x)=e^{\int-\frac{6}{x} d x}=e^{\ln |x|^{-6}}=x^{-6}=\frac{1}{x^{6}}
$$

- Multiply both sides of (3) by $\rho(x)$

$$
\frac{1}{x^{6}} \cdot \frac{d v}{d x}-\frac{6}{x} \cdot \frac{1}{x^{6}} \quad v=-\frac{15}{x^{8}}
$$

- Note

$$
L H S=D_{x}\left(\rho(x) V(x)=P_{x}\left(\frac{1}{x^{6}} \cdot v(x)\right)\right.
$$

- Integrate both sides.

$$
\begin{aligned}
\frac{1}{x^{6}} v(x) & =-\int \frac{15}{x^{8}} d x=-15 \int x^{-8} d x \\
& =-\frac{15}{-7} x^{-7}+C \\
\Rightarrow \quad v(x) & =\frac{15}{7} \cdot \frac{1}{x}+C \cdot x^{6}
\end{aligned}
$$

Back substitute $v=y^{-3}$, we have

$$
\begin{aligned}
& \left(y^{-3}\right)^{-\frac{1}{3}}=\left(\frac{15}{7} \cdot \frac{1}{x}+c \cdot x^{6}\right)^{-\frac{1}{3}} \\
& \Rightarrow y=\left(\frac{15}{7} \cdot \frac{1}{x}+c \cdot x^{6}\right)^{-\frac{1}{3}}
\end{aligned}
$$

Reducible Second-Order Equations
Read Page $67-69$ in our textbook.
A second-order differential equation has the general form

$$
\begin{equation*}
F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0 \tag{2}
\end{equation*}
$$

It may be that the dependent variable y or the independent variable x is missing from a second-order equation.

Case 1. Variable y Missing

- If y is missing, then our equation takes the form

$$
\begin{equation*}
F\left(x, y^{\prime}, y^{\prime \prime}\right)=0 \tag{11}
\end{equation*}
$$

- Then the substitution

$$
\begin{equation*}
p=y^{\prime}=\frac{d y}{d x}, \quad y^{\prime \prime}=\frac{d p}{d x} \tag{12}
\end{equation*}
$$

results in the first-order differential equation

$$
\begin{equation*}
F\left(x, p, p^{\prime}\right)=0 \tag{13}
\end{equation*}
$$

Example 5 Find a general solution of the reducible second-order differential equation

$$
\begin{equation*}
x y^{\prime \prime}=y^{\prime} \tag{14}
\end{equation*}
$$

ANs: Let $p=y^{\prime}=\frac{d y}{d x}$, then $y^{\prime \prime}=\frac{d p}{d x}\left(=p^{\prime}\right)$
Then subs them into (14), then

$$
x \frac{d P}{d x}=P \quad(\text { sep })
$$

$$
\text { If } \begin{aligned}
p \neq 0 \text {, then } & \begin{aligned}
& \int \frac{d p}{p}=\int \frac{d x}{x} \\
& \Rightarrow \ln |p|=\ln |x|+c \\
& \Rightarrow e^{\ln |p|}=e^{\ln |x|+c}=e^{c} e^{\ln (x)}=c^{\prime} e^{\ln |x|} \\
& \Rightarrow p=c_{1} x
\end{aligned}
\end{aligned}
$$

Now

$$
p=\frac{d y}{d x}=c_{1} x \Rightarrow y=\int c_{1} x d x=\frac{1}{2} c_{1} x^{2}+c_{2}
$$

Case 2. Variable x Missing

- If x is missing, then our equation takes the form

$$
F\left(y, y^{\prime}, y^{\prime \prime}\right)=0
$$

- Then the substitution

$$
p=y^{\prime}=\frac{d y}{d x}, \quad y^{\prime \prime}=\frac{d p}{d x}=\frac{d p}{d y} \frac{d y}{d x}=p \frac{d p}{d y}
$$

results in the first-order differential equation

$$
F\left(y, p, p \frac{d p}{d y}\right)=0
$$

for p as a function of y.
Exercise 6 (Check the answer from the filled-in notes.) Find a general solution of the reducible second-order differential equation

$$
y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=y y^{\prime}
$$

ANS: Let $p=y^{\prime}=\frac{d y}{d x}$, then $y^{\prime \prime}=\frac{d p}{d x}=\frac{d p}{d y} \cdot \frac{d y}{d x}=p \cdot \frac{d p}{d y}$
Plug them into egn (1) we get.

$$
y \cdot p \cdot \frac{d p}{d y}+p^{2}=y \cdot p
$$

If $p \neq 0$, then

$$
y \cdot \frac{d p}{d y}+p=y
$$

If $y \neq 0$, then
$\frac{d P}{d y}+\frac{1}{y} \cdot P=1 .\left(\begin{array}{c}A \\ \text { A linear first order egn, where } P \text { is a function } \\ 0.1 y\end{array}\right)$

Note: In fact, we observe that LHS of θ is the derivative of My w.r.t. y, which means $L H S=y \frac{d p}{d y}+P=\frac{\partial(P y)}{\partial y}$. So we can integrate both sides of \otimes and get $p y=\int y d y \Rightarrow p y=\frac{1}{2} y^{2}+c_{1}$ Yon can use the method from $\S 15$ to check we get the same ansween from θ
So we have $p y=\frac{1}{2} y^{2}+c_{1} \Rightarrow p=\frac{y^{2}+c_{1}}{2 y}$
Since $p=\frac{d y}{d x}=\frac{y^{2}+c_{1}}{2 y} \Rightarrow \int \frac{2 y d y}{y^{2}+c_{1}}=\int d x$

$$
\Rightarrow \int \frac{d\left(y^{2}+c_{1}\right)}{y^{2}+c_{1}}=\int d x \Rightarrow \ln \left|y^{2}+c_{1}\right|=x+c_{2} \Rightarrow y^{2}=c_{2} e^{x}+c_{1}
$$

Part 2 Exact Equations

Consider $F(x, y(x))=C$, which implicitly defines y as a function of x.
For example, $F(x, y)=x^{3}+2 x y^{2}+2 y^{3}=C$.
Differentiating both sides with respect to x, then we have

$$
\begin{equation*}
\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \cdot \frac{d y}{d x}=0 \tag{19}
\end{equation*}
$$

Let $M(x, y)=\frac{\partial F}{\partial x}$ and $N(x, y)=\frac{\partial F}{\partial y}$. We can rewrite it in differential form

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{3}
\end{equation*}
$$

Then $F(x, y)=C$ is a solution of $\mathrm{Eq}(3)$.
For example, differentiating both sides of $F(x, y)=x^{3}+2 x y^{2}+2 y^{3}=C$, we have

$$
\begin{equation*}
\left(3 x^{2}+2 y^{2}\right)+\left(4 x y+6 y^{2}\right) \frac{d y}{d x}=0 \tag{20}
\end{equation*}
$$

which can be rewrite as

$$
\begin{equation*}
\left(3 x^{2}+2 y^{2}\right) d x+\left(4 x y+6 y^{2}\right) d y=0 \tag{21}
\end{equation*}
$$

Note $F(x, y)=x^{3}+2 x y^{2}+2 y^{3}=C$ is a solution to the above equation.

Defintion. Exact Equation

Generally, consider the following equation

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{4}
\end{equation*}
$$

If there exists a function $F(x, y)$ such that

$$
\begin{equation*}
F_{x}=\frac{\partial F}{\partial x}=M \quad \text { and } \quad \frac{\partial F}{\partial y}=N=F_{y} \tag{22}
\end{equation*}
$$

then the equation

$$
\begin{equation*}
F(x, y)=C \tag{23}
\end{equation*}
$$

is an implicit general solution of Eq. (4). We call such Eq. (4) an exact equation.
 If $F_{x y} \& F_{y x}$ are continuous. on open set in the $x y$-plane. Then $F_{x y}=F_{y x}$

$$
F_{x y}=\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}=F_{y_{x}}
$$

If turns out $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial X}$ is necessary \& sufficient for exactness
THEOREM 1 Criterion for Exactness
Suppose that the functions

$$
\begin{equation*}
M(x, y) \quad \text { and } \quad N(x, y) \tag{24}
\end{equation*}
$$

are continuous and have continuous first-partial order derivatives in the open rectangle

$$
\begin{equation*}
R: a<x<b, c<y<d \tag{25}
\end{equation*}
$$

Then the differential equation

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{5}
\end{equation*}
$$

is exact if and only if

$$
\begin{equation*}
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \tag{6}
\end{equation*}
$$

at each point of R.

Example 7 Verify that the given differential equation is exact; then solve it.

$$
\begin{equation*}
\left(2 x y^{2}+3 x^{2}\right) d x+\left(2 x^{2} y+4 y^{3}\right) d y=0 \tag{26}
\end{equation*}
$$

ANs: Let $M(x, y)=2 x y^{2}+3 x^{2}$

$$
N(x, y)=2 x^{2} y+4 y^{3}
$$

Then $\begin{aligned} \frac{\partial \mu}{\partial y} & =\frac{\partial\left(2 x y^{2}+3 x^{2}\right)}{\partial y}=4 x y \\ \frac{\partial N}{\partial x} & =\frac{\partial\left(2 x^{2} y+4 y^{3}\right)}{11}\end{aligned}$

$$
\frac{\partial N}{\partial x}=\frac{\partial\left(2 x^{2} y+4 y^{3}\right)}{\partial x}=4 x y
$$

By Tho 1, the given eg is exact.
Then by the definition of exact eqn.
There exist $F(x, y)$ such that

$$
\frac{\partial F}{\partial x}=M(x, y)=2 x y^{2}+3 x^{2}
$$

$$
\begin{aligned}
& \Rightarrow F(x, y)=\int \frac{\partial F}{\partial x} d x=\int\left(2 x y^{2}+3 x^{2}\right) d x \\
& \Rightarrow \quad F(x, y)=x^{2} y^{2}+x^{3}+y(y)
\end{aligned}
$$

We diff. both sides in terms of y.

$$
N(x, y)=\frac{\partial F}{\partial y}=2 x^{2} y+0+\frac{d g(y)}{d y}
$$

by def

$$
\begin{aligned}
& \Rightarrow 2 x^{3} y+4 y^{3}=2 x^{3} y+\frac{d g(y)}{d y} \\
& \Rightarrow \frac{d g(y)}{d y}=4 y^{3} \\
& \Rightarrow \quad g(y)=\int \frac{d g(y)}{d y} d y=\int 4 y^{3} d y=y^{4}
\end{aligned}
$$

So $F(x, y)=x^{2} y^{2}+x^{3}+y^{4}=C$ is a general solution

